ClassicalDPA

compute the dynamic(consistent) pressure as a (postprocessing) result to the current velocity field

This algorithm is invoked if the first digit of the variable FLIQUID_ConsistentPressure_Version is put to 1. According to DynamicPressure, the precise model for the dynamic pressure is \begin{align}\frac{\left( \nabla ^{T}\mathbf{v} \right)_{dyn}^{n+1}-\left( \nabla ^{T}\mathbf{v} \right)^{n}}{\Delta t}+\nabla ^{T}\left( \frac{1}{\rho }\nabla \left( p_{dyn}^{n+1} \right) \right)=\Psi \left( \mathbf{v}^{n+1} \right)-\Theta_{dyn} \left( \mathbf{v}^{n+1} \right)-\Phi \left( \mathbf{v}^{n+1} \right)\end{align} Which, in another way, is \begin{align}\frac{\left( \overline{\nabla ^{T}\mathbf{v}} \right)_{dyn}^{n+1}-\frac{1}{\Delta t}\left( \frac{1}{\rho }\frac{\partial \rho }{\partial p}\left( p_{dyn}^{n+1}-p_{dyn}^{n} \right) \right)-\left( \nabla ^{T}\mathbf{v} \right)^{n}}{\Delta t}+\nabla ^{T}\left( \frac{1}{\rho }\nabla \left( p_{dyn}^{n+1} \right) \right)=\Psi \left( \mathbf{v}^{n+1} \right)-\Theta_{dyn} \left( \mathbf{v}^{n+1} \right)-\Phi \left( \mathbf{v}^{n+1} \right)\end{align} Reorganization (step by step) yields \begin{align}\frac{1}{\Delta t}\left( \left( \overline{\nabla ^{T}\mathbf{v}} \right)_{dyn}^{n+1}-\left( \nabla ^{T}\mathbf{v} \right)^{n} \right)-\frac{1}{\Delta t^{2}}\left( \frac{1}{\rho }\frac{\partial \rho }{\partial p}\left( p_{dyn}^{n+1}-p_{dyn}^{n} \right) \right)+\nabla ^{T}\left( \frac{1}{\rho }\nabla \left( p_{dyn}^{n+1} \right) \right)=\Psi \left( \mathbf{v}^{n+1} \right)-\Theta_{dyn} \left( \mathbf{v}^{n+1} \right)-\Phi \left( \mathbf{v}^{n+1} \right)\end{align} And finally \begin{align}\begin{array}{*{35}{l}} -\frac{1}{\Delta t^{2}}\left( \frac{1}{\rho }\frac{\partial \rho }{\partial p}p_{dyn}^{n+1} \right)+\nabla ^{T}\left( \frac{1}{\rho }\nabla \left( p_{dyn}^{n+1} \right) \right)= & -\frac{1}{\Delta t}\left( \left( \overline{\nabla ^{T}\mathbf{v}} \right)_{dyn}^{n+1}-\left( \nabla ^{T}\mathbf{v} \right)^{n} \right) \\ {} & -\frac{1}{\Delta t^{2}}\left( \frac{1}{\rho }\frac{\partial \rho }{\partial p}p_{dyn}^{n} \right) \\ {} & \text{+}\Psi \left( \mathbf{v}^{n+1} \right)-\Theta_{dyn} \left( \mathbf{v}^{n+1} \right)-\Phi \left( \mathbf{v}^{n+1} \right) \\ \end{array}\end{align} The numerical discretization of this PDE is \begin{align} \sum\limits_{j=1}^{N(i)} \left( c^{\nabla^T \frac{1}{\rho} \nabla}_{ij} - \delta_{ij} \frac{1}{\Delta t^2} \frac{1}{\rho} \frac{\partial \rho }{\partial p} \right) p_{j} = \sum\limits_{j=1}^{N(i)} W_{ij} p_{j} = Q_i\end{align} with \( i\) running over all MESHFREE point indices, \( W_{ij}\) being the matrix indices and \( Q_i\) the right hand side vector of the global, sparse linear system.
  • the derivation of the divergence of the velocity terms is found in DeriveDivergenceOfVelocity
  • The value of \( \overline{\left( \nabla ^{T}\mathbf{v} \right)}_{dyn}^{n+1}\) is temporarily stored in the varible %ind_div_bar% . Moreover, for postprocessing reasons, it can be retrieved from the variable %ind_div_bar_pDyn% .
  • the value of \( \rho_{dyn}^n\), needed for the term \( \overline{\left( \nabla ^{T}\mathbf{v} \right)}_{dyn}^{n+1}\), is found in the variable %ind_r_pDyn% .
List of members:
ComputationOfPSI how to numerically compute the source term that goes with the viscous forces
ComputationOfTHETA how to numerically compute the source term due to the Darcy forces
ComputationOfPHI how to numerically compute the source term that goes with inertial forces