GeneralizedUpwind

Generalized way of computing upwind terms

This section here generalizes the way of computing upwind pressure and upwind velocity, stated in SimplifiedFastUpwindTerms and ClassicalUpwindTerms . Method 1: original method, see ClassicalUpwindTerms \begin{align} \begin{array}{l} \bar p_{orig} = p - \frac{{\rho c}}{2}\left( {{\mathbf{v}}^ + - {\mathbf{v}}^ - } \right)^T{\mathbf{n}}{\text{ with }}{\mathbf{v}}^ + \left( {\mathbf{x}} \right) = {\mathbf{\tilde v}}\left( {{\mathbf{x}} + \alpha h{\mathbf{n}}} \right){\text{ and }}{\mathbf{v}}^ - \left( {\mathbf{x}} \right) = {\mathbf{\tilde v}}\left( {{\mathbf{x}} - \alpha h{\mathbf{n}}} \right)\\ {\mathbf{\bar v}}_{orig} = {\mathbf{v}} - \frac{1}{{2\rho c}}\left( {p^ + - p^ - } \right){\mathbf{n}}{\text{ with }}p^ + \left( {\mathbf{x}} \right) = \tilde p\left( {{\mathbf{x}} + \alpha h{\mathbf{n}}} \right){\text{ and }}p^ - \left( {\mathbf{x}} \right) = \tilde p\left( {{\mathbf{x}} - \alpha h{\mathbf{n}}} \right) \end{array}\end{align} With \( \alpha h\) the upwind step length \( {\mathbf{n}} = \frac{1}{{\left\| {\nabla p} \right\|}}\nabla p\) the upwind direction Method 2: simplified and fast upwind quantities, see SimplifiedFastUpwindTerms \begin{align} \begin{array}{l} \bar p_{simp} = p - \rho cL\left( {\tilde \nabla ^T{\mathbf{v}}} \right)\\ {\mathbf{\bar v}}_{simp} = {\mathbf{v}} - \frac{L}{{\rho c}}\tilde \nabla p \end{array}\end{align} With \( L = \left\{ {\begin{array}{*{20}{c}} {{\text{either }}\beta \cdot \Delta t \cdot c}\\ {{\text{or }}\gamma \cdot h{\text{ }}} \end{array}} \right.\) the upwind step length (needed in the Taylor series expansion) Hint: choosing \( \beta = 0.5\) will lead to second order in time integration. Combined method We can bring both methods together into one \begin{align} \begin{array}{l} \bar p_{general}{\rm{ }} = {\rm{ }}p{\rm{ }} - {\rm{ }}\frac{{\rho c}}{2}\left( {{\mathbf{v}}^ + - {\mathbf{v}}^ - } \right)^T{\mathbf{n}}{\rm{ }} - {\rm{ }}\rho cL\left( {\tilde \nabla ^T{\mathbf{v}}} \right)\\ {\mathbf{\bar v}}_{general}{\rm{ }} = {\rm{ }}{\mathbf{v}}{\rm{ }} - {\rm{ }}\frac{1}{{2\rho c}}\left( {p^ + - p^ - } \right){\mathbf{n}}{\rm{ }} - {\rm{ }}\frac{L}{{\rho c}}\tilde \nabla p \end{array}\end{align} Upwind lengths for different solvers?
  • FPM1 (original) \begin{align} \begin{array}{l} \alpha = 0.2\\ \beta = 0\\ \gamma = 0 \end{array}\end{align}
  • FPM1 (simplified, currently implemented in VPS) \begin{align} \begin{array}{l} \alpha = 0\\ \beta = 0\\ \gamma = 0.2 \end{array}\end{align}
  • FPM3 \begin{align} \begin{array}{l} \alpha = 0\\ \beta = \left\{ {\begin{array}{*{20}{c}} {0.5{\text{ }}if{\text{ }}\nabla ^T{\mathbf{v}} > 0{\text{ (rarefaction)}}}\\ {0{\text{ elsewise }}} \end{array}} \right.\\ \gamma = \left\{ {\begin{array}{*{20}{c}} {0.0{\text{ }}if{\text{ }}\nabla ^T{\mathbf{v}} > 0{\text{ (rarefaction)}}}\\ {0.2{\text{ elsewise }}} \end{array}} \right. \end{array}\end{align}