COMP_DropletphaseWithDisturbance
disturbance for DROPLETPHASE (UCV)
Default: COMP_DropletphaseWithDisturbance = 0
By default the update of the positions of
DROPLETPHASE points is:
\begin{align} \mathbf{x}_{\text{default}} = \mathbf{x}_i^{n+1} = \mathbf{x}_i^n + \Delta t_i \cdot \mathbf{v}_i^{n+1}\end{align}
\( \mathbf{x}_i^{n+1}\) is the current and \( \mathbf{x}_i^n\) is the previous position.
\( \Delta t_i\) is the current time step size and \( \mathbf{v}_i^{n+1}\) is the current velocity.
If the disturbance is switched on by
COMP_DropletphaseWithDisturbance = 1, the default update is disturbed
by the following procedure.
-
- Rotate the default update position \( \mathbf{x}_{\text{default}}\) by a small, smoothing length dependent
angle (based on a random number) with respect to a random, normalized axis through the previous position:
-
- random number \( r\) determines the sign (-1, 0, 1) of angle \( \alpha\) (rotation only for non-zero sign)
- random vector \( \mathbf{d}\) determines the rotation axis as \( \mathbf{a} = \frac{\mathbf{x}_i^n - \mathbf{d}}{\lVert \mathbf{x}_i^n - \mathbf{d}\rVert_2}\)
- rotation of default update position by \( \mathbf{x}_i^{n+1} = (\mathbf{a} \cdot \mathbf{x}_{\text{default}}) \mathbf{a} + \cos(\alpha)(\mathbf{a} \times \mathbf{x}_{\text{default}}) \times \mathbf{a} + \sin(\alpha)(\mathbf{a} \cdot \mathbf{x}_{\text{default}})\)
- Adapt the current velocity.
Note: This procedure guarantees that the distance between previous and current position
is not changed compared to the default behavior.