%INTEGRATION_FS_TIME%
surface and time integration of a vector valued function along the free surface
This computes the integral with respect to the free surface \( \partial\Omega_\text{FS}\) identified by the material flag
\begin{align}
I_\text{FSTime} = \int\limits_{t_0}^{t_{n+1}} \int_{\partial\Omega_\text{FS}} {\bf u}(t) \cdot {\bf n}(t) dA dt
\end{align}
by a preliminary approximation
\begin{align} I_\text{FS} \approx \sum_{i \in P_\text{FS}} \left( {\bf u}_i\left( t_{n+1} \right) \cdot {\bf n}_i\left( t_{n+1} \right) \right) A_i\left( t_{n+1} \right)\end{align}
and a subsequent time integration:
\begin{align} I_{\text{FSTime}}\left( t_{n+1} \right) = I_{\text{FSTime}}\left( t_{n} \right) + \left(t_{n+1}-t_{n} \right) \cdot I_\text{FS}\end{align}
\( {\bf n}\) represents the local free surface normal. The integrand \( {\bf u}\) is given by the vector
(
Integrand_x,
Integrand_y,
Integrand_z), whose components are all of type
ExpressionOfIntegrand.
\( P_\text{FS}\) is the set of all free surface points with the given material flag and \( A_i\) is the area of the i-th point.
The material flag $MaterialTag$ defines the integration area (analogous to the
POSTPROCESS-flags for
%INTEGRATION_BND%).
Note: Analogous to
%INTEGRATION_INT_TIME%, a list of material flags can be used to specify the integration area. The number of flags is not limited.
Example:
Note: In case of multiphase simulations with detection of interface connections (see PHASE_distinction), the interface points are treated like free surface points.